Tổng quan CRISPR

CRISPR/Cas9 – những chiếc kéo phân tử làm từ enzyme và RNA

Những chiếc kéo cắt gene, các dao mổ phân tử – những thuật ngữ mô tả này được sử dụng để dành cho việc truyền tải nội dung của phương pháp mới về chỉnh sửa hơn là cái tên CRISPR-Cas9 khá khó mà có thể làm được.[19] Như tên gọi đề xuất, hệ thống, trong đó, ở dạng tự nhiên của nó, bao gồm hai phân tử RNA và một phân tử protein, có thể tách phân tử di truyền DNA. Hơn nữa, nó có thể làm điều này với độ chính xác phẫu thuật tại một vị trí cụ thể trong bộ gen. Điều này cho phép các nhà nghiên cứu làm tắt biểu hiện gene hoặc chèn các trình tự mới tại vị trí cắt. Kết quả là, DNA có thể được sửa đổi nhanh hơn và dễ dàng hơn nhiều so với khả năng sử dụng các phương pháp chỉnh sửa gene trước đó.[17][19][20]

Mặc dù hệ thống về cơ bản có vẻ đơn giản, nhưng các yếu tố khác nhau phải được phối hợp với độ chính xác cực cao để kéo cắt gene có thể hoạt động với độ chính xác như vậy. Vì lý do này, ngay cả sau 30 năm nghiên cứu, chức năng của CRISPR-Cas9 vẫn chưa được hiểu hoàn toàn.[19][20]

Trình tự xuôi ngược trong bộ gene

5'-... G A A T T C...-3'
3'-... C T T A A G...-5'

Một trình tự trong sợi xoắn kép DNA mà đọc xuôi ở sợi này giống hệt với đọc ngược ở sợi bổ sung kia. Tại đây, enzyme EcoR1 sẽ nhận ra và thực hiện cắt ở trình tự này.

Câu tiếng Anh “Able was I ere I saw Elba” là một câu xuôi ngược (palindrome), nghĩa là khi đọc ngược lại từ phải sang trái được nội dung giống hệ giống như khi đọc theo chiều thuận. Sự khởi đầu của cuộc cách mạng CRISPR đã được đánh dấu bằng việc phát hiện ra một số lượng lớn các trình tự xuôi ngược lặp đi lặp lại trong một vùng DNA của vi khuẩn. Trong các trình tự này, các chữ cái của mã di truyền, bốn phân tử base adenine, cytosine, thymineguanine, được sắp xếp sao cho chúng có thứ tự giống như ở sợi DNA bổ sung khi đọc theo hướng ngược lại.[19] Cũng vì đặc điểm này mà tên gọi CRISPR được viết tắt từ những chữ cái đầu của cụm từ khá dài Clustered Regularly Interspaced Short Palindromic Repeats, tạm dịch: Cụm các trình tự xuôi ngược ngắn có độ dài bằng nhau lặp lại đan xen giữa các vùng đệm.[17][21]

Không giống như từ xuôi ngược, ví dụ ‘civic’ và ‘tenet’, mà có ý nghĩa, các đoạn xuôi ngược trong từ điển di truyền không được sử dụng để dịch mã thành các protein chức năng. Mặc dù vậy, chúng không phải hoàn toàn là không có ý nghĩa.[19] Các enzyme cắt DNA (nuclease) thường tìm đến các trình tự xuôi ngược này như là các trình tự nhận diện, và tại đây chúng thực hiện cắt phân tử DNA. Các trình tự này thường dài khoảng 4, 6 hoặc 8 base, mặc dù một số protein cắt đòi hỏi đến 20 cặp base hoặc nhiều hơn.[17][21]

Bên cạnh các trình tự xuôi ngược ngắn lặp lại giống nhau của CRISPR là các vùng mang thông tin phiên mã cho phân tử RNA, có sự sắp xếp rất ổn định (cấu trúc bậc hai). Chúng dài khoảng 23 đến 47 cặp base. Có thể tìm thấy các vùng có độ dài biến đổi này nằm xen lẫn các trình tự xuôi ngược.[19] Những đoạn mang thông tin phiên mã này có nguồn gốc từ bộ gene của DNA ngoại lai xâm nhập vào tế bào vi khuẩn, và được gọi là vùng đệm DNA (spacer DNA).[17][21]

Vùng CRISPR còn bao gồm một vùng khởi động (promoter) đảm bảo cho vùng CRISPR được đọc và phiên mã thành CRISPR-RNA (crRNA). Ngoài ra còn có các gene đi kèm với CRISPR (CRISPR-associated genes, Cas) nằm bên cạnh vùng khởi động.[19] Những gene mã hóa cho việc tổng hợp lên các protein Cas - hay chính là các enzyme có chức năng cắt sợi DNA. Các trình tự CRISPR và vùng đệm theo sau bởi một vùng phiên mã thành phân tử RNA gọi là tracrRNA, mà nó hướng dẫn các phân tử cắt và crRNA đến vị trí đích trên phân tử DNA của virus.[17][21]

Chức năng tự nhiên của CRISPR-Cas

Chúng ta - loài người - thường coi vi khuẩn là một trong những tác nhân gây bệnh. Nhưng vi khuẩn cũng gặp phải tình trạng ốm yếu. Một số virus thực sự chuyên tấn công những vi sinh vật này. Có thể coi những virus đó, mà được biết đến là thể thực khuẩn, như hình ảnh giống với những tàu vũ trụ đổ bộ xuống một hành tinh ở xa.[19] Virus tiêm DNA của chúng vào tế bào vi khuẩn, mà sau đó được tái bản, và sinh ra thể thực khuẩn mới - quá trình này có thể giết chết tế bào vật chủ. Giống như các sinh vật khác, vi khuẩn cũng đã phát triển các cơ chế khéo léo nhằm bảo vệ chúng khỏi những kẻ xâm lược này. Các hệ thống CRISPR-Cas là một trong những cơ chế như vậy.[17][22]

Phòng ngừa miễn dịch với danh sách ghi nhớ

Các tế bào vi khuẩn có thể sử dụng phức hệ CRISPR-Cas để bảo vệ chúng khỏi những lần xâm lăng về sau, vì CRISPR-Cas tạo cho hệ thống phòng thủ tiêm nhiễm của vi khuẩn một loại danh sách ghi nhớ: khi một thể thực khuẩn bám vào màng tế bào vi khuẩn và sau đó tiêm DNA của nó vào bên trong tế bào, phức hệ phòng thủ sẽ sao chép một đoạn ngắn những DNA ngoại lai này và gắn vào những đoạn trình tự CRISPR đã có trước đó trên DNA của vi khuẩn.[19] Các vùng đệm (spacer) - có trình tự với độ dài khác nhau nằm giữa các đoạn CRISPR có độ dài bằng nhau - do vậy tạo nên một kiểu danh sách thư viện lưu trữ mọi chủng loại tác nhân gây bệnh mà tế bào vi khuẩn từng gặp phải.[17][22] Chỉ 1 vi khuẩn trong 10 triệu vi khuẩn bị virus tấn công có khả năng thu nạp vùng đệm để tăng khả năng bảo vệ của hệ miễn dịch của nó.[19]

Vi khuẩn cũng truyền lại bộ thư viện này cho thế hệ con cháu của chúng. Một số nhà nghiên cứu coi điều này như là sự xác nhận giả thuyết phát triển bởi nhà sinh học Jean-Baptiste de Lamarck trong thế kỷ XIX, mà hầu như bị phản đối bởi đa số các nhà khoa học trong thời gian dài. Theo học thuyết của ông, các đặc tính thu nạp được trong vòng đời của sinh vật có thể được truyền sang cho các thế hệ sau.[17][22]

Một nửa số vi khuẩn đã biết ngày nay và hầu như mọi loài vi khuẩn cổ đều có hệ thống phòng thủ CRISPR-Cas. Cách tế bào triển khai hệ thống này phụ thuộc vào từng loài vi sinh vật. Về cơ bản có hai lớp CRISPR-Cas đã được các nhà sinh học biết đến và có thể chia nhỏ hai lớp này thành những lớp con. Hệ thống Lớp 1 chứa các phức hệ protein bao gồm nhiều phân tử, trong khi hệ thống Lớp 2 chỉ có một protein có chức năng cắt DNA.[17][22]

Nhưng trên tất cả chúng đều có đặc điểm chung đó là chúng chèn thêm các đoạn DNA ngoại lai mới vào vùng CRISPR và phiên mã các phân tử RNA từ các vùng này, mà sau đó phân tử RNA này sẽ hướng dẫn một enzyme hoặc phức hệ enzyme đến đoạn DNA đích.[19] Các phân tử RNA có thể bám vào một vị trí trên DNA xâm nhập mà khớp bổ sung với chính trình tự của chúng và nhờ đó hướng dẫn cho enzyme Cas nơi nó tiến hành cắt DNA ngoại lai. Cơ chế này làm DNA từ virus trở lên vô hại và vi khuẩn tránh khỏi sự lây nhiễm.[17][22]

CRISPR-Cas9 là một trong những hệ chức năng có cấu hình đơn giản nhất và khiến cho nó rất phù hợp trong việc ứng dụng ở lĩnh vực công nghệ sinh học. Với CRISPR-Cas9 và tracrRNA, phức hệ chỉ cần hai phân tử RNA và một protein Cas9 để tìm đến DNA đích và cắt đứt đoạn này.[19] Các nhà sinh học thậm chí có thể tổng hợp hai phân tử RNA này thành một phân tử RNA dẫn đường duy nhất trong phòng thí nghiệm, do đó tạo thành một phức hệ sử dụng dễ dàng hơn nữa. Thêm vào đó, CRISPR-Cas9 hoạt động không chỉ ở vi khuẩn mà còn làm việc tốt trong các tế bào nhân thực. Từ giun kim cho đến con người - những chiếc kéo cắt gene mới khám phá này có thể sử dụng ở khắp mọi nơi.[17][22]

Sự hoạt động của CRISPR-Cas9

Với hệ CRISPR-Cas9, các trình tự CRISPR và vùng đệm được phiên mã thành CRISPR-RNA (crRNA). Trước khi phân tử này có thể dẫn protein Cas9 đến vị trí cắt DNA, nó phải được chỉnh sửa thành dạng cuối cùng nhờ các enzyme cắt và một số phần của nó bị cắt bỏ. RNase III là một trong những enzyme như thế. Cùng với trình tự tracrRNA nó biến đổi dạng ban đầu của crRNA thành một phân tử đầy đủ chức năng.[17][23]

crRNA thành thục chứa một trình tự phiên mã của CRISPR và của DNA ngoại lai.[19] Trình tự này cung cấp cho Cas9 trình tự nhận diện mà tại vị trí đó trên DNA mới xâm nhập sẽ bị cắt. crRNA bám vào tracrRNA, và chỉ cần hai phân tử này có thể cho Cas9 biết vị trí nó thực hiện cắt phân tử DNA.[17][23]

Trình tự nhận diện khớp bổ sung với crRNA là chưa đủ để cho Cas9 có thể bám vào DNA sợi ngoại lai: nó cũng cần một "môtip nằm cạnh tiền vùng đệm" (‘proto-spacer adjacent motif’) hay viết tắt là PAM. Cas9 chỉ có thể bám vào sợi xoắn kép DNA nếu một trình tự PAM có ba nucleotide có chứa hai guanine và một base bất kỳ khác nằm cạnh trình tự nhận diện.[23]

Hai sợi của DNA bị tháo xoắn và phân tử crRNA/tracrRN – hoặc RNA dẫn đường nhân tạo – có thể gắn kèm vào.[19] Enzyme sau đó thực hiện cắt hai sợi DNA ở cùng một vị trí. Do vậy, để Cas9 có thể cắt DNA, cần phải có cả trình tự nhận diện và đoạn môtip PAM. Bởi vì bộ gene của vi khuẩn không có bất kỳ một đoạn PAM nào, nó được bảo vệ khỏi bị phá hủy bởi chính hệ miễn dịch của nó.[17][23]

Tài liệu tham khảo

WikiPedia: CRISPR http://www.nature.com/scitable/blog/bio2.0/editing... http://adsabs.harvard.edu/abs/2007Sci...315.1709B http://adsabs.harvard.edu/abs/2008Sci...322.1843M http://adsabs.harvard.edu/abs/2010Sci...327..167H http://adsabs.harvard.edu/abs/2015Natur.522...20L http://news.vanderbilt.edu/2014/08/new-technique-a... http://catalogue.bnf.fr/ark:/12148/cb169411795 http://data.bnf.fr/ark:/12148/cb169411795 http://www.idref.fr/181652293 http://id.loc.gov/authorities/subjects/sh201800009...